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Université Catholique de Louvain,

Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve, Belgium
cInstitute for Particle Physics Phenomenology, University of Durham

Durham, DH1 3LE, U.K.

E-mail: delduca@lnf.infn.it, claude.duhr@uclouvain.be,

e.w.n.glover@durham.ac.uk

Abstract: We consider the high-energy limit of the colour-ordered one-loop five-gluon am-

plitude in the planar maximally supersymmetric N = 4 Yang-Mills theory in multi-Regge

kinematics where all of the gluons are strongly ordered in rapidity. We apply the calcula-

tion of the one-loop pentagon in D = 6−2ǫ performed in a companion paper [1] to compute

the one-loop five-gluon amplitude through to O(ǫ2). Using the factorisation properties of

the amplitude in the high-energy limit, we extract the one-loop gluon-production vertex

to the same accuracy, and, by exploiting the iterative structure of the gluon-production

vertex implied by the BDS ansatz, we perform the first computation of the two-loop gluon-

production vertex up to and including finite terms.

Keywords: Supersymmetric gauge theory, Gauge Symmetry, QCD

ArXiv ePrint: 0905.0100

c© SISSA 2009 doi:10.1088/1126-6708/2009/12/023

mailto:delduca@lnf.infn.it
mailto:claude.duhr@uclouvain.be
mailto:e.w.n.glover@durham.ac.uk
http://arxiv.org/abs/0905.0100
http://dx.doi.org/10.1088/1126-6708/2009/12/023


J
H
E
P
1
2
(
2
0
0
9
)
0
2
3

Contents

1 Introduction 1

2 Five-point amplitudes in multi-Regge kinematics 2

2.1 Tree amplitudes in multi-Regge kinematics 3

2.2 High-energy factorisation of the five-point amplitude 4

2.3 The two-loop five-point amplitude and the BDS ansatz 7

2.4 Analytic continuation of the five-point amplitude to the physical region 8

3 The one-loop five-point amplitude 9

3.1 Soft limit 11

4 The one-loop gluon-production vertex 12

4.1 Analytic continuation of the one-loop vertex to the physical region 13

5 The two-loop gluon-production vertex 16

6 Conclusions 17

A Multi-parton kinematics 18

B Multi-Regge kinematics 20

C The soft limit of the one-loop five-point amplitude 20

1 Introduction

The colour-stripped one-loop five-gluon MHV amplitude in the planar maximally super-

symmetric N = 4 Yang-Mills theory to all orders in ǫ is given by [2, 3],

m
(1)
5 (1, 2, 3, 4, 5) = −1

4

∑

cyclic

s12s23I
1m
4 (1, 2, 3, 45, ǫ) − ǫ

2
ǫ1234I

6−2ǫ
5 (ǫ) , (1.1)

where m
(1)
5 denotes the one-loop coefficient, i.e., the one-loop amplitude rescaled by the

tree-level amplitude, and where the cyclicity is over i = 1, . . . , 5. Here I1m
4 (1, 2, 3, 45, ǫ)

represents the one-mass box integral with an off-shell leg of virtuality s45, I
6−2ǫ
5 (ǫ) is the

(massless) one-loop pentagon integral evaluated in 6 − 2ǫ dimensions, and the contracted

Levi-Civita tensor is ǫ1234 = tr[γ56k16k2 6k36k4]. In a companion paper [1], we have performed

the first analytic computation of the higher dimension pentagon, I6−2ǫ
5 (ǫ), albeit in the

simplified case of multi-Regge kinematics [4]. In this limit, we have derived I6−2ǫ
5 (ǫ) as an

all-order expression in ǫ, and explicitly expanded it through to O
(

ǫ2
)

.

– 1 –
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In the high-energy limit (HEL) s ≫ |t|, any scattering process is dominated by the

exchange of the highest-spin particle in the crossed channel. Thus, in perturbative QCD the

leading contribution in powers of s/t to any scattering process comes from gluon exchange

in the t channel. In this limit, scattering amplitudes undergo a Regge factorisation [4, 5]

which allows an amplitude for gluon exchange to be decomposed in terms of building blocks

associated with the various components of the amplitude. In the simplest case of four-gluon

scattering, one exchanges a reggeised gluon (representing a gluon ladder) that is emitted

from one scattering vertex and absorbed at the other. This emission is described by the

coefficient function or impact factor. For processes involving more gluons, additional gluons

are emitted by the gluon ladder and this emission is controlled by the gluon-production (or

Lipatov) vertex. Using the high-energy factorisation for colour-stripped amplitudes [6, 7],

we can relate the one-loop gluon-production vertex in the N = 4 super Yang-Mills theory

to the one-loop five-gluon amplitude given in eq. (1.1) and extract it through to O
(

ǫ2
)

.

Recently, Bern, Dixon and Smirnov (BDS) have proposed an iterative ansatz [8, 9]

for the l-loop n-gluon scattering amplitude in the maximally supersymmetric N = 4

Yang-Mills theory (MSYM), with the maximally-helicity violating (MHV) configuration

and for arbitrary l and n. The iterative structure of the BDS ansatz has been shown to

be correct for the two-loop five-point amplitude through direct numerical calculation [3].

Together with the high-energy factorisation, that implies an iterative structure of the

gluon-production vertex [7]. Thus, the knowledge of the one-loop gluon-production ver-

tex through to O
(

ǫ2
)

, allows us to perform the first computation of the two-loop gluon-

production vertex up to and including the finite terms.

Our paper is organised as follows. In section 2 we consider the five-point amplitude

in multi-Regge kinematics. First we make a precise definition of multi-Regge kinematics

and review how the tree-level MHV amplitude factorises in the high energy limit. The

factorisation properties of the five-gluon amplitude are described in section 2.2 and the

relationship between the one-loop amplitude and the one-loop Lipatov vertex established.

We remind the reader of the iterative structure of the Lipatov vertex in section 2.3 while

its analytic continuation properties are discussed in section 2.4. In section 3 we present the

one-loop five-point amplitude through to O
(

ǫ2
)

and use it to compute the one-loop gluon-

production vertex through to O
(

ǫ2
)

in section 4 where we find contributions from both the

parity-even and parity-odd parts. In section 5 we compute the two-loop gluon-production

vertex through to finite terms. Our findings are briefly summarised in section 6. Some of the

technical details are enclosed in the appendices. Further details on the multi-parton light-

cone momenta and how they behave in multi-Regge kinematics are given in appendices A

and B, while the soft limit of the one-loop Lipatov vertex is further discussed in appendix C.

2 Five-point amplitudes in multi-Regge kinematics

We consider a five-point amplitude, g1 g2 → g3 g4 g5, with all the momenta taken as out-

going, and label the legs cyclically clockwise. In multi-Regge kinematics [4], the produced

particles are strongly ordered in rapidity and have comparable transverse momenta,

y3 ≫ y4 ≫ y5; |p3⊥| ≃ |p4⊥| ≃ |p5⊥| . (2.1)

– 2 –
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Accordingly, the Mandelstam invariants can be written in the approximate form (B.3).1

We label the momenta transferred in the t-channel as

q1 = p1 + p5 , q2 = −p2 − p3 , (2.2)

with virtualities ti = q2i . Then it is easy to see that in multi-Regge kinematics the transverse

components of the momenta qi dominate over the longitudinal components, q2i ≃ −|qi⊥|2.
In addition, t1 = s15 and t2 = s23, and we label s = s12, and s1 = s45, s2 = s34. Thus,

eq. (2.1) becomes

s≫ s1, s2 ≫ −t1, −t2 . (2.3)

Labelling the transverse momentum of the particle emitted along the ladder as κ = |p4⊥|2,
we can write

κ =
s1 s2
s

, (2.4)

which is known as the mass-shell condition (B.4).

2.1 Tree amplitudes in multi-Regge kinematics

The colour decomposition of the tree-level five-point amplitude is [10]

M(0)
5 (1, 2, 3, 4, 5) = 25/2

∑

S5/Z5

tr
(

T d1 · · · T d5

)

m
(0)
5 (1, 2, 3, 4, 5) , (2.5)

where di is the colour of a gluon of momentum pi and helicity νi. The T ’s are the colour

matrices2 in the fundamental representation of SU(N) and the sum is over the noncyclic

permutations S5/Z5 of the set [1, . . . , 5]. For five gluons, there are only MHV helicity config-

urations (−,−,+,+,+) for which the tree-level gauge-invariant colour-stripped amplitudes

assume the form

m
(0)
5 (1, 2, 3, 4, 5) = g3 〈pipj〉4

〈p1p2〉〈p2p3〉〈p3p4〉〈p4p5〉〈p5p1〉
, (2.6)

where i and j are the two gluons of negative helicity. The colour structure of eq. (2.5) in

multi-Regge kinematics is known [11–13] and will not be considered further. Here we con-

centrate on the behaviour of the colour-stripped amplitude (2.6). Using the spinor products

in multi-Regge kinematics (B.5), the amplitude (2.6) takes the factorised form [12],

m
(0)
5 (1, 2, . . . , 5) = s

[

g C(0)(p2, p3)
] 1

t2

[

g V (0)(q2, q1;κ)
] 1

t1

[

g C(0)(p1, p5)
]

(2.7)

which is shown schematically in figure 1.

The gluon coefficient functions C(0), which yield the LO gluon impact factors, are

given in ref. [4] in terms of their spin structure and in ref. [12, 14] at fixed helicities of the

external gluons,

C(0)
(

p−2 , p
+
3

)

= 1 C(0)
(

p−1 , p
+
5

)

=
p∗5⊥
p5⊥

, (2.8)

1A physically more intuitive representation of the invariants in terms of rapidities is given in ref. [7].
2We use the normalization tr(T cT d) = δcd/2, although it is immaterial in what follows.

– 3 –
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s2

s1

κ

Figure 1. Five-point amplitude in multi-Regge kinematics. The green blobs indicate the coefficient

functions (impact factors) and the vertex describing the emission of gluons along the ladder.

with the complex transverse momentum p⊥ = px + ipy. The vertex for the emission of a

gluon along the ladder is [12, 15, 16]

V (0)(q2, q1, κ) =
√

2
q∗2⊥q1⊥
p4⊥

, (2.9)

with p4 = q2 − q1.

2.2 High-energy factorisation of the five-point amplitude

The Regge factorisation of the tree-level colour-stripped amplitude is given by eq. (2.7). In

the leading logarithmic (LL) approximation, the virtual radiative corrections to eq. (2.7)

are obtained, to all orders in αS, by replacing the propagator of the t-channel gluon by its

reggeised form [4]. That is, by making the replacement

1

ti
→ 1

ti

(si

τ

)α(ti)
, (2.10)

in eq. (2.7), with α(ti) related to the loop transverse-momentum integration

α(ti) = αsNc ti

∫

d2k⊥
(2π)2

1

k2
⊥(qi − k)2⊥

+ O
(

α2
s

)

ti = q2i ≃ −|qi⊥|2 , (2.11)

and αs = g2/4π. The infrared divergence in eq. (2.11) can be regulated in 4 dimensions

with an infrared-cutoff mass. Alternatively, using dimensional regularization in d = 4− 2ǫ

dimensions, the integral in eq. (2.11) is performed in 2 − 2ǫ dimensions, yielding

α(ti) = g2 cΓ

(

µ2

−ti

)ǫ

N
2

ǫ
+ O(g4) , (2.12)

with N colours, and

cΓ =
1

(4π)2−ǫ

Γ(1 + ǫ) Γ2(1 − ǫ)

Γ(1 − 2ǫ)
. (2.13)

α(ti) is the Regge trajectory and accounts for the higher-order corrections due to gluon

exchange in the ti channel. In eq. (2.10), the reggeisation scale τ is introduced to sep-

arate contributions to the reggeized propagator, the coefficient function and the gluon-

production vertex. It is much smaller than any of the s-type invariants, and it is of the

order of the t-type invariants. In order to go beyond the LL approximation and to compute

– 4 –
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the higher-order corrections to the gluon-production vertex (2.9), we need a high-energy

prescription [5] which disentangles the virtual corrections to the gluon-production vertex

from those to the coefficient functions (2.8) and from those that reggeize the gluon (2.10).

The high-energy prescription of ref. [5] is given at the colour-dressed amplitude level in

QCD, where it holds to the next-to-leading-logarithmic (NLL) accuracy. In ref. [6], we

showed that the high-energy prescription, when applied to the colour-stripped four-point

amplitude, is valid up to three loops. In ref. [7], we conjectured the factorised form of a

generic colour-stripped n-gluon amplitude in multi-Regge kinematics. For the five-point

amplitude, g1 g2 → g3 g4 g5, that prescription yields

m5 = s [g C (p2, p3, τ)]
1

t2

(−s2
τ

)α(t2)

[g V (q2, q1, κ, τ)]
1

t1

(−s1
τ

)α(t1)

[g C (p1, p5, τ)] ,

(2.14)

with the invariants labelled as in section 2, i.e., t1 = s51, t2 = s23, s1 = s45 and s2 = s34.

In eq. (2.14), we suppressed the dependence of the coefficient function and of the gluon-

production vertex on the dimensional regularisation parameters µ2 and ǫ. In order for the

amplitude m5 to be real, eq. (2.14) is taken in the Euclidean region where all the invariants

are negative,

s, s1, s2, t1, t2, κ < 0 , (2.15)

so that eq. (2.3) becomes,

− s≫ −s1,−s2 ≫ −t1,−t2 . (2.16)

Then the mass-shell condition (2.4) for the intermediate gluon is

− κ =
(−s1) (−s2)

−s , (2.17)

where κ = −|p4⊥|2.
In eq. (2.14), the Regge trajectory has the perturbative expansion,

α(ti) = ḡ2ᾱ(1)(ti) + ḡ4ᾱ(2)(ti) + ḡ6ᾱ(3)(ti) + O
(

ḡ8
)

, (2.18)

with i = 1, 2, and with the rescaled coupling

ḡ2 = g2cΓN . (2.19)

In eq. (2.14), the coefficient functions C and the gluon-production vertex V are also ex-

panded in the rescaled coupling,

C(pi, pj, τ) = C(0) (pi, pj)

(

1 +

s−1
∑

r=1

ḡ2rC̄(r) (tk, τ) + O
(

ḡ2s
)

)

, (2.20)

V (q2, q1, κ, τ) = V (0) (q2, q1)

(

1 +

s−1
∑

r=1

ḡ2rV̄ (r) (t1, t2, κ, τ) + O
(

ḡ2s
)

)

.

with (pi +pj)
2 = tk where C and V are real, up to overall complex phases in C(0), eq. (2.8),

and V (0), eq. (2.9), induced by the complex-valued helicity bases. Note that because several

– 5 –
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transverse scales occur, we prefer to associate the renormalisation scale dependence of the

trajectory, coefficient function and gluon-production vertex with the loop coefficients rather

than in the rescaled coupling,

ᾱ(n)(ti) =

(

µ2

−ti

)nǫ

α(n) , C̄(n)(tk, τ) =

(

µ2

−tk

)nǫ

C(n)(tk, τ) ,

V̄ (n)(t1, t2, κ, τ) =

(

µ2

−κ

)nǫ

V (n)(t1, t2, κ, τ) . (2.21)

The perturbative expansion of eq. (2.14) can be written as

m5 = m
(0)
5

(

1 + ḡ2 m
(1)
5 + ḡ4m

(2)
5 + ḡ6m

(3)
5 + O

(

ḡ8
)

)

. (2.22)

In the expansion of eq. (2.22), the knowledge of the l-loop five-point amplitude in multi-

Regge kinematics (2.16), together with the l-loop trajectory α(l) and coefficient function

C(l), allows one to derive the gluon-production vertex to the same accuracy. The one-loop

coefficient is

m
(1)
5 (ǫ) = ᾱ(1)(t1)L1 + ᾱ(1)(t2)L2 + C̄(1)(t1, τ) + C̄(1)(t2, τ) + V̄ (1)(t1, t2, κ, τ) . (2.23)

where Li = ln(−si/τ) and i = 1, 2. The one-loop trajectory is [4],

α(1) =
2

ǫ
, (2.24)

and the one-loop coefficient function to all orders in ǫ is given by [5, 17–21]

C(1)(t, τ) =
ψ(1 + ǫ) − 2ψ(−ǫ) + ψ(1)

ǫ
− 1

ǫ
ln

−t
τ
. (2.25)

Since α(1) and C(1)(t, τ) are known to all orders in ǫ, we see that the order to which m
(1)
5 (ǫ)

is known dictates the order to which one may extract V (n)(t1, t2, κ, τ).

Similarly the two-loop coefficient of the five-point amplitude is

m
(2)
5 (ǫ) =

1

2

[

m
(1)
5 (ǫ)

]2
+ ᾱ(2)(t1)L1 + ᾱ(2)(t2)L2 + C̄(2)(t1, τ) + V̄ (2)(t1, t2, κ, τ) (2.26)

+C̄(2)(t2, τ) −
1

2

(

C̄(1)(t1, τ)
)2

− 1

2

(

V̄ (1)(t1, t2, κ, τ)
)2

− 1

2

(

C̄(1)(t2, τ)
)2

,

where m
(1)
5 (ǫ), C̄(1)(t, τ) and V̄ (1)(t1, t2, κ, τ) must be known through to O

(

ǫ2
)

. The two-

loop trajectory, α(2), is known in full QCD [22–26]. In MSYM, it has been computed

through to O
(

ǫ0
)

directly [27] and using the maximal trascendentality principle [28], and

through to O
(

ǫ2
)

directly [6],

α(2) = −2ζ2
ǫ

− 2ζ3 − 8ζ4ǫ+ (36ζ2ζ3 + 82ζ5) ǫ
2 + O

(

ǫ3
)

. (2.27)

– 6 –
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The MSYM two-loop coefficient function has been computed through to O
(

ǫ2
)

[6],

C(2)(t, τ) =
2

ǫ4
+

2

ǫ3
ln

−t
τ

−
(

5ζ2 −
1

2
ln2 −t

τ

)

1

ǫ2
−
(

ζ3 + 2ζ2 ln
−t
τ

)

1

ǫ

−55

4
ζ4 +

(

ζ2ζ3 − 41ζ5 + ζ4 ln
−t
τ

)

ǫ

−
(

95

2
ζ2
3 +

1695

8
ζ6 + (18ζ2ζ3 + 42ζ5) ln

−t
τ

)

ǫ2 + O
(

ǫ3
)

=
1

2

[

C(1)(t, τ)
]2

+
ζ2
ǫ2

+

(

ζ3 + ζ2 ln
−t
τ

)

1

ǫ

+

(

ζ3 ln
−t
τ

− 19ζ4

)

+

(

4ζ4 ln
−t
τ

− 2ζ2ζ3 − 39ζ5

)

ǫ

−
(

48ζ2
3 +

1773

8
ζ6 + (18ζ2ζ3 + 41ζ5) ln

−t
τ

)

ǫ2 + O
(

ǫ3
)

. (2.28)

Armed with this knowledge together with the two-loop amplitude, m
(2)
5 (ǫ), one could

extract the two-loop Lipatov vertex. However, as we showed in ref. [7], the Lipatov vertex

satisfies its own iterative formula, and one can avoid needing to know m
(2)
5 (ǫ).

2.3 The two-loop five-point amplitude and the BDS ansatz

In the normalization of refs. [6, 7], the iterative structure of the two-loop five-point ampli-

tude in the N = 4 super Yang-Mills theory is given by [8, 9]

m
(2)
5 (ǫ) =

1

2

[

m
(1)
5 (ǫ)

]2
+

2G2(ǫ)

G(2ǫ)
f (2)(ǫ)m

(1)
5 (2ǫ) + 4Const(2) + O(ǫ) , (2.29)

where Const(2) = −ζ2
2/2, the f (2) function is

f (2)(ǫ) = −ζ2 − ζ3ǫ− ζ4ǫ
2, (2.30)

and

G(ǫ) =
e−γǫΓ(1 − 2ǫ)

Γ(1 + ǫ)Γ2(1 − ǫ)
= 1 + O

(

ǫ2
)

, (2.31)

and where the one-loop five-point amplitude, m
(1)
5 (ǫ), must be known through to O

(

ǫ2
)

.

In ref. [3], the two-loop five-point amplitude has been shown to fulfil the BDS ansatz by

the numeric calculation of m
(1)
5 (ǫ) through to O

(

ǫ2
)

and of m
(2)
5 (ǫ) though to finite terms.

In ref. [6], the iterative structure [8, 9] and the Regge factorisation of the two-loop

four-point amplitude have been used to write the two-loop Regge trajectory and coefficient

function through to finite terms in terms of the constant Const(2), the function f (2), and

of the one-loop coefficient function C(1)(ǫ),

α(2)(ǫ) = 2f (2)(ǫ)α(1)(2ǫ) + O(ǫ),

C(2)(ǫ) =
1

2

[

C(1)(ǫ)
]2

+
2G2(ǫ)

G(2ǫ)
f (2)(ǫ)C(1)(2ǫ) + 2Const(2) + O(ǫ), (2.32)

– 7 –
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where the one-loop coefficient function C(1)(ǫ) is needed through to O
(

ǫ2
)

, and where we

stress only the dependence on the dimensional-regularisation parameter ǫ.

Combining eq. (2.32), the iterative structure of the two-loop five-point ampli-

tude (2.29), and the constant term of the high-energy expansion (2.26), one can find an

iteration formula for the two-loop gluon-production vertex [7],

V (2)(ǫ) =
1

2

[

V (1)(ǫ)
]2

+
2G2(ǫ)

G(2ǫ)
f (2)(ǫ)V (1)(2ǫ) + O(ǫ) , (2.33)

where the one-loop gluon-production vertex must be known through to O
(

ǫ2
)

. Note that

in order to compute the two-loop gluon-production vertex through to finite terms, it is

not needed to know the two-loop five-point amplitude or the two-loop coefficient function

explicitly. It suffices to know the one-loop five-point amplitude through to O
(

ǫ2
)

, from

which one can derive the one-loop gluon-production vertex to the same accuracy.

2.4 Analytic continuation of the five-point amplitude to the physical region

We analytically continue the high-energy prescription for the colour-stripped ampli-

tude (2.14) to the physical region, where s, s1, s2 are positive and t1, t2 are negative. The

analytic continuation is performed according to the usual Feynman +iε prescription, e.g.,

for s > 0,

ln(−s− iε) = ln s− iπ. (2.34)

It is easy to see that this is equivalent to the replacements,

(−s) → e−iπ s, (−s1) → e−iπ s1, (−s2) → e−iπ s2 , (2.35)

In the physical region multi-Regge kinematics require that,

s≫ s1, s2 ≫ −t1, −t2 . (2.36)

Eq. (2.35) implies that eqs. (2.23) and (2.26) are continued by ln(−sj) = ln(sj) − iπ, for

sj > 0 and j = 1, 2. The mass-shell condition (2.17) and the analytic continuation (2.35)

imply that the transverse scale κ is continued as,

(−κ) → e−iπ κ , (2.37)

and the mass-shell condition is reduced to the usual one in the physical region, eq. (2.4).

Note that the expansions of eqs. (2.18)–(2.21) are still valid, but because of the analytic

continuation on κ, which implies that ln(−κ) = ln(κ)− iπ, for κ > 0, the gluon-production

vertex becomes complex,

V̄ (n)(t1, t2, κ, τ) =

(

µ2

κ

)nǫ

V
(n)
phys(t1, t2, κ, τ) , (2.38)

with

V
(n)
phys(t1, t2, κ, τ) = eiπnǫ V (n)(t1, t2, e

−iπ(−κ), τ) . (2.39)
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3 The one-loop five-point amplitude

We may write the one-loop five-point amplitude (1.1) for general kinematics as,

m
(1)
5 (1, 2, 3, 4, 5) = m

(1)
5e (1, 2, 3, 4, 5) +m

(1)
5o (1, 2, 3, 4, 5) , (3.1)

where the parity-even and odd contributions are given to all orders in ǫ by [2, 3],

m
(1)
5e (1, 2, 3, 4, 5) = −1

4
2G(ǫ)

∑

cyclic

s12s23I
1m
4 (1, 2, 3, 45, ǫ) , (3.2)

m
(1)
5o (1, 2, 3, 4, 5) = − ǫ

2
2G(ǫ) ǫ1234I

6−2ǫ
5 (ǫ) , (3.3)

where the cyclicity is over i = 1, . . . , 5. Here I1m
4 (1, 2, 3, 45, ǫ) is the one-mass box with the

massive leg of virtuality s45, I
6−2ǫ
5 (ǫ) is the pentagon evaluated in 6 − 2ǫ dimensions, the

contracted Levi-Civita tensor is ǫ1234 = tr[γ5 6 k1 6k2 6k3 6 k4], and we use the normalization of

refs. [6, 7], with G(ǫ) as in eq. (2.31).

For multi-Regge kinematics (2.16) in the Euclidean region (2.15), the parity-even con-

tribution is, to all orders in ǫ,

m
(1)
5e (1, 2, 3, 4, 5) =

− 1

ǫ2

(

µ2

−κ

)ǫ

Γ(1 + ǫ)Γ(1 − ǫ)

+
2

ǫ

(

µ2

−t1

)ǫ

(ψ(1) − ψ(−ǫ)) +
1

ǫ

(

µ2

−t2

)ǫ

(2ψ(1) − 3ψ(−ǫ) + ψ(1 + ǫ))

+
1

ǫ2

(

µ2

−t1

)ǫ

2F1

(

−ǫ, 1, 1 − ǫ;
t1
t2

)

− 1

ǫ(1 + ǫ)

(

µ2

−t2

)ǫ
t1
t2

2F1

(

1, 1 + ǫ, 2 + ǫ;
t1
t2

)

+
1

ǫ

(

µ2

−t1

)ǫ

ln
s1
κ

+
1

ǫ

(

µ2

−t2

)ǫ

ln
s2
κ

+
1

ǫ

(

µ2

−t1

)ǫ

ln
s1

t2 − t1
+

1

ǫ

(

µ2

−t2

)ǫ

ln
s2

t2 − t1
, (3.4)

for (−t2) > (−t1), and

2F1 (−ǫ, 1, 1 − ǫ; z) = 1 −
∞
∑

n=1

Lin(z) ǫn,

2F1 (1, 1 + ǫ, 2 + ǫ; z) =
Li1(z)

z
+

(

Li1(z)

z
− Li2(z)

z

)

ǫ+

(

Li3(z)

z
− Li2(z)

z

)

ǫ2

+

(

Li3(z)

z
− Li4(z)

z

)

ǫ3 +

(

Li5(z)

z
− Li4(z)

z

)

ǫ4 + . . . (3.5)

where Li1(z) = − ln(1 − z). The parity-even term for (−t1) > (−t2) is obtained by ex-

changing t1 and t2 in eq. (3.4). Eq. (3.4) is manifestly real; it is also symmetric in t1 and

t2, although not manifestly. It can be put in a manifestly symmetric form, at the price of

introducing imaginary parts, which cancel only after combining all the terms. Eq. (3.4)
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agrees through to O
(

ǫ0
)

with the N = 4 part of the one-loop five-gluon amplitude in

QCD [29] in multi-Regge kinematics [18].

The parity-odd contribution is characterised by the contracted Levi-Civita tensor which

can be written as,

ǫ1234 = s12s34 − s13s24 + s14s23 − 2〈12〉[23]〈34〉[41] . (3.6)

In multi-Regge kinematics (2.16) this becomes

ǫ1234 = (−s) (p3⊥p
∗
4⊥ − p4⊥p

∗
3⊥) . (3.7)

Therefore we see that in the high-energy limit, the parity-odd contribution (3.3) is given by

m
(1)
5o (1, 2, 3, 4, 5) = −ǫG(ǫ) (−s) (p3⊥p

∗
4⊥ − p4⊥p

∗
3⊥)

(

µ2

−κ

)ǫ

P , (3.8)

where the function P is

P =



















1

st2
I(IIa)(κ, t1, t2) for −

√

st1
s1s2

+
√

st2
s1s2

> 1 and −t1 < −t2 ,

1

s1s2
I(I)(κ, t1, t2) for

√

st1
s1s2

+
√

st2
s1s2

< 1 .

(3.9)

To all orders in ǫ, I(IIa)(κ, t1, t2) is [1],

I(IIa) (κ, t1, t2) =

− 1

ǫ3
y−ǫ
2 Γ(1 − 2ǫ) Γ(1 + ǫ)2 F4

(

1 − 2ǫ, 1 − ǫ, 1 − ǫ, 1 − ǫ;−y1, y2

)

+
1

ǫ3
Γ(1 + ǫ) Γ(1 − ǫ)F4

(

1, 1 − ǫ, 1 − ǫ, 1 + ǫ;−y1, y2

)

− 1

ǫ2
yǫ
1 y

−ǫ
2

{

[

ln y1 + ψ(1 − ǫ) − ψ(−ǫ)
]

F4

(

1, 1 − ǫ, 1 + ǫ, 1 − ǫ;−y1, y2

)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ǫ 1 − − −
− − 1 + δ 1 − ǫ 1 + ǫ+ δ − − y1, y2

)

|δ=0

}

+
1

ǫ2
yǫ
1

{

[

ln y1 + ψ(1 + ǫ) − ψ(−ǫ)
]

F4

(

1, 1 + ǫ, 1 + ǫ, 1 + ǫ;−y1, y2

)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ + ǫ 1 − − −
− − 1 + δ 1 + ǫ 1 + ǫ+ δ − − y1, y2

)

|δ=0

}

, (3.10)

with

y1 =
κ

t2
and y2 =

t1
t2
, (3.11)

and where we introduced the Appell function

F4(a, b, c, d;x, y) =

∞
∑

m=0

∞
∑

n=0

(a)m+n (b)m+n

(c)m(d)n

xm

m!

yn

n!
, (3.12)
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and the Kampé de Fériet function

F p,q
p′,q′

(

αi βj γj

α′
k β

′
ℓ γ

′
ℓ

x, y

)

=
∞
∑

m=0

∞
∑

n=0

∏

i (αi)m+n
∏

j (βj)m (γj)n
∏

k (α′
k)m+n

∏

ℓ (β′ℓ)m (γ′ℓ)n

xm

m!

yn

n!
, (3.13)

with 1 ≤ i ≤ p, 1 ≤ j ≤ q, 1 ≤ k ≤ p′ and 1 ≤ ℓ ≤ q′, and (a)n denote the Pochham-

mer symbols,

(a)n =
Γ(a+ n)

Γ(a)
. (3.14)

The dash in the definition of the Kampé de Fériet functions in eq. (3.13) indicates that a

given index is absent in the definition of the hypergeometric series, e.g.,

F 2,1
0,2

(

a b c − − −
− − d e f − x1, x2

)

=

∞
∑

n1=0

∞
∑

n2=0

(a)n1+n2
(b)n1+n2

(c)n1

(d)n1
(e)n2

(f)n1

xn1

1

n1!

xn2

2

n2!
. (3.15)

In ref. [1], I(IIa)(κ, t1, t2) is given as a Laurent expansion through to O(ǫ) in terms of

Goncharov’s multiple polylogarithms [30, 31].

A few comments are in order: eq. (3.8) starts at O(ǫ), because eq. (3.10) is finite: all

the poles in ǫ cancel. Furthermore, because of the contracted Levi-Civita tensor (3.6) in

eq. (1.1), new momentum structures, other than the ones of eqs. (2.8) and (2.9), occur

in m
(1)
5 .

In the region where
√

st1
s1s2

−
√

st2
s1s2

> 1 and (−t1) > (−t2), which we term IIb, I(IIb)

is given by [1],

I(IIb)(κ, t1, t2) =
t2
t1

I(IIa)(κ, t2, t1) (3.16)

In eq. (3.9), I(I)(κ, t1, t2) can be derived from I(IIa)(κ, t1, t2) by means of an analytic

continuation, as detailed in ref. [1], where it is also given explicitly to all orders in ǫ, as well

as a Laurent expansion through to O(ǫ) in terms of Goncharov’s multiple polylogarithms.

3.1 Soft limit

As discussed in ref. [1], the limit in which the intermediate gluon becomes soft, p4 → 0,

and thus κ→ 0, t1 → t and t2 → t, is realised in the regions IIa and IIb of eq. (3.9). Thus,

lim
p4→0

m
(1)
5o (1, 2, 3, 4, 5) = ǫG(ǫ)

p3⊥p
∗
4⊥ − p4⊥p

∗
3⊥

t
I(II)(κ, t) . (3.17)

I(II)(κ, t) is obtained from eq. (3.10) by taking the limits t1 → t and t2 → t. Because

I(II)(κ, t) is logarithmic in κ/t, the parity-odd contribution is power suppressed and thus

vanishes as p4 → 0. Therefore the soft limit of the full one-loop five-point amplitude is

given solely by the soft limit of the parity-even contribution,

lim
p4→0

m
(1)
5 (1, 2, 3, 4, 5) =

2

ǫ

(

µ2

−t

)ǫ
(

ψ(1+ǫ)−2ψ(−ǫ)+ψ(1)+ln
s

t

)

− 1

ǫ2

(

µ2

−κ

)ǫ
πǫ

sin(πǫ)
.

(3.18)

Using eq. (C.7), we see that eq. (3.18) fulfills the soft limit of the one-loop five-point

amplitude in multi-Regge kinematics (C.4).
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4 The one-loop gluon-production vertex

In order to compute the one-loop gluon-production vertex, we use eq. (2.20) and subtract

the one-loop trajectory (2.24) and coefficient function (2.25) from the one-loop five-point

amplitude (2.23) and (3.4). Thus, we obtain the gluon-production vertex,

V̄ (1)(t1, t2, τ, κ) = V̄ (1)
e (t1, t2, τ, κ) + V̄ (1)

o (t1, t2, κ) , (4.1)

in terms of parity-even and odd contributions,

V̄ (1)
e (t1, t2, τ, κ) = m

(1)
5e (1, 2, 3, 4, 5) − ᾱ(1)(t1)L1 − ᾱ(1)(t2)L2 − C̄(1)(t1, τ) − C̄(1)(t2, τ) ,

V̄ (1)
o (t1, t2, κ) = m

(1)
5o (1, 2, 3, 4, 5) . (4.2)

Because the high-energy coefficient functions and the Regge trajectory are parity-even, the

parity-odd part of the one-loop gluon-production vertex is equal to the parity-odd part of

the five-point amplitude (3.8), and accordingly does not depend on the factorisation scale

τ . Using eq. (2.21), in the unphysical region (2.15) the parity-even contribution is, to all

orders in ǫ,

V (1)
e (t1, t2, τ, κ) =

− 1

ǫ2
Γ(1 + ǫ)Γ(1 − ǫ)

+

(

κ

t1

)ǫ(ψ(1) − ψ(1 + ǫ)

ǫ
+

1

ǫ
ln

−t1
τ

)

+

(

κ

t2

)ǫ(ψ(1) − ψ(−ǫ)
ǫ

+
1

ǫ
ln

−t2
τ

)

+
1

ǫ2

(

κ

t1

)ǫ

2F1

(

ǫ, 1, 1 − ǫ;
t1
t2

)

− 1

ǫ(1 + ǫ)

(

κ

t2

)ǫ t1
t2

2F1

(

1, 1 + ǫ, 2 + ǫ;
t1
t2

)

−1

ǫ

[(

κ

t1

)ǫ

+

(

κ

t2

)ǫ] [

ln
−κ
τ

+ ln
t1 − t2
τ

]

. (4.3)

Eq. (4.3) is valid in the region where (−t2) > (−t1). The expression in the region where

(−t2) < (−t1) can be easily obtained by analytic continuation. Using eqs. (2.21) and (3.8),

the parity-odd contribution is, to all orders in ǫ,

V (1)
o (t1, t2, κ) = −ǫG(ǫ) (−s) (p3⊥p

∗
4⊥ − p4⊥p

∗
3⊥) P , (4.4)

with P given by eq. (3.9), which also cancels the apparent dependence on s above.

In the soft limit, κ → 0, the parity-even part of the one-loop gluon-production ver-

tex (4.3) agrees to all orders in ǫ with the soft limit of the corresponding QCD vertex (C.8).

As we have seen in section (3.1), the parity-odd part vanishes.
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By expanding eq. (4.3) through to O
(

ǫ2
)

, and labelling the coefficients of the terms of

O(ǫ) as

VC1(t1, t2) = ζ3 − Li3

(

t1
t2

)

VC2(t1, t2, τ) = ln
t1
t2

(

Li2

(

t1
t2

)

+ ζ2

)

+
1

3
ln3 −t1

τ
− 1

2
ln2 −t1

τ
ln

−t2
τ

+
1

6
ln3 −t2

τ

VC3(t1, t2, τ) =
1

6
ln3 −t1

τ
ln

−t2
τ

− 1

8
ln4 −t1

τ
− 1

24
ln4 −t2

τ

−1

2

(

ln2 −t1
τ

− ln2 −t2
τ

)(

Li2

(

t1
t2

)

+ ζ2

)

, (4.5)

the even part of the one-loop Lipatov vertex becomes

V (1)
e (t1, t2, τ, κ) = − 1

ǫ2
Γ(1+ǫ)Γ(1−ǫ) +

[(

κ

t1

)ǫ

+

(

κ

t2

)ǫ](

−1

ǫ
ln

−κ
τ

+ǫVC1(t1, t2)

)

+

(

−1

2
ln2 t1

t2
+ǫVC2(t1, t2, τ)

)(−κ
τ

)ǫ

+ǫ2 VC3(t1, t2, τ)+O
(

ǫ3
)

. (4.6)

with the expansion of the first term given in eq. (C.9).

The expansion of eq. (4.4) through to O
(

ǫ2
)

is provided by the expansion of the func-

tions I(IIa)(κ, t1, t2) and I(I)(κ, t1, t2) of eq. (3.9) through to O(ǫ) in terms of Goncharov’s

multiple polylogarithms [1].

4.1 Analytic continuation of the one-loop vertex to the physical region

Using eq. (2.39) and the prescription ln(−κ) = ln(κ)− iπ, for κ > 0, in the physical region

where s, s1, s2 are positive and t1, t2 are negative, the parity-even part of the one-loop

gluon-production vertex (4.3) is

V
(1)
e,phys (t1, t2, τ, κ) =

− 1

ǫ2
eiπǫ Γ(1 + ǫ)Γ(1 − ǫ)

+

(

κ

−t1

)ǫ(ψ(1) − ψ(1 + ǫ)

ǫ
+

1

ǫ
ln

−t1
τ

)

+

(

κ

−t2

)ǫ(ψ(1) − ψ(−ǫ)
ǫ

+
1

ǫ
ln

−t2
τ

)

+
1

ǫ2

(

κ

−t1

)ǫ

2F1

(

ǫ, 1, 1 − ǫ;
t1
t2

)

− 1

ǫ(1 + ǫ)

(

κ

−t2

)ǫ t1
t2

2F1

(

1, 1 + ǫ, 2 + ǫ;
t1
t2

)

−1

ǫ

[(

κ

−t1

)ǫ

+

(

κ

−t2

)ǫ] [

ln
κ

τ
− iπ + ln

t1 − t2
τ

]

. (4.7)

Using the identity (C.9) and

πǫ
cos(πǫ)

sin(πǫ)
= 1 + ǫ(ψ(1 − ǫ) − ψ(1 + ǫ)) , (4.8)
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the real part of the parity-even one-loop gluon-production vertex becomes

Re V
(1)
e,phys(t1, t2, τ, κ) =

−1 + ǫ(ψ(1 − ǫ) − ψ(1 + ǫ))

ǫ2

+

(

κ

−t1

)ǫ(ψ(1) − ψ(1 + ǫ)

ǫ
+

1

ǫ
ln

−t1
τ

)

+

(

κ

−t2

)ǫ(ψ(1) − ψ(−ǫ)
ǫ

+
1

ǫ
ln

−t2
τ

)

+
1

ǫ2

(

κ

−t1

)ǫ

2F1

(

ǫ, 1, 1 − ǫ;
t1
t2

)

− 1

ǫ(1 + ǫ)

(

κ

−t2

)ǫ t1
t2

2F1

(

1, 1 + ǫ, 2 + ǫ;
t1
t2

)

−1

ǫ

[(

κ

−t1

)ǫ

+

(

κ

−t2

)ǫ] [

ln
κ

τ
+ ln

t1 − t2
τ

]

, (4.9)

which can be readily expanded in ǫ like in eqs. (4.5) and (4.6).

The imaginary part is given by

Im V
(1)
e,phys(t1, t2, τ, κ) =

π

ǫ

{

− 1 +

(

κ

−t1

)ǫ

+

(

κ

−t2

)ǫ
}

. (4.10)

Taking into account the sign flip of the spin structure (3.7), the analytic continuation

of the parity-odd part of the one-loop gluon-production vertex (4.4) is

V
(1)
o,phys(t1, t2, τ, κ) = −ǫG(ǫ) s (p3⊥p

∗
4⊥ − p4⊥p

∗
3⊥) Pphys , (4.11)

where the function Pphys is,

Pphys =



















1

st2
I(IIa)

phys (κ, t1, t2) for −
√

−st1
s1s2

+
√

−st2
s1s2

> 1 and (−t1) < (−t2) ,

1

s1s2
I(I)

phys(κ, t1, t2) for
√

−st1
s1s2

+
√

−st2
s1s2

< 1 .

(4.12)

The analytic continuation (2.37) implies that the ratios y1 and y2, eq. (3.11), are contin-

ued as,

(−y1) → e−iπ y1 , y2 → y2 , (4.13)

and the functions I(I,II)
phys (κ, t1, t2) are continued according to eq. (2.39). Then eq. (3.10) is

continued to,

I(IIa)
phys (κ, t1, t2) =

−eiπǫ 1

ǫ3
y−ǫ
2 Γ(1 − 2ǫ) Γ(1 + ǫ)2 F4

(

1 − 2ǫ, 1 − ǫ, 1 − ǫ, 1 − ǫ;−y1, y2

)

+ eiπǫ 1

ǫ3
Γ(1 + ǫ) Γ(1 − ǫ)F4

(

1, 1 − ǫ, 1 − ǫ, 1 + ǫ;−y1, y2

)

− 1

ǫ2
(−y1)

ǫ y−ǫ
2

{

[

ln(−y1) − iπ + ψ(1 − ǫ) − ψ(−ǫ)
]

F4

(

1, 1 − ǫ, 1 + ǫ, 1 − ǫ;−y1, y2

)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ǫ 1 − − −
− − 1 + δ 1 − ǫ 1 + ǫ+ δ − − y1, y2

)

|δ=0

}
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+
1

ǫ2
(−y1)

ǫ

{

[

ln(−y1) − iπ + ψ(1 + ǫ) − ψ(−ǫ)
]

F4

(

1, 1 + ǫ, 1 + ǫ, 1 + ǫ;−y1, y2

)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ + ǫ 1 − − −
− − 1 + δ 1 + ǫ 1 + ǫ+ δ − − y1, y2

)

|δ=0

}

, (4.14)

where the Appell and the Kampé de Fériet functions stay real under the analytic continu-

ation [1]. Like in the Euclidean region in section 3, in eq. (4.14) all the poles in ǫ cancel.

Eq. (4.14) may be expanded in ǫ in terms of real M functions, defined by the double

series [1],

M(~ı,~,~k;x1, x2) =
∞
∑

n1=0

∞
∑

n2=0

(

n1 + n2

n1

)2

S~ı(n1)S~(n2)S~k
(n1 + n2)x

n1

1 xn2

2 , (4.15)

where S~ı(n) denote nested harmonic numbers [32]. Eq. (4.14) could also be expanded in

terms of Goncharov’s multiple polylogarithms, at the price of introducing a complicated

and fictitious analytic structure: the Goncharov polylogarithms would occur with several

spurious imaginary parts, which ultimately would have to cancel in order to respect the

fact that the Appell and the Kampé de Fériet functions are real.

Using the identities (4.8) and (C.9), the real part of the function I
(IIa)
phys (κ, t1, t2) is

Re I(IIa)
phys (κ, t1, t2) =

−y−ǫ
2

1+ǫ(ψ(1−ǫ)−ψ(1+ǫ))

ǫ3
Γ(1 − 2ǫ) Γ(1 + ǫ)

Γ(1 − ǫ)
F4

(

1 − 2ǫ, 1 − ǫ, 1 − ǫ, 1 − ǫ;−y1, y2

)

+
1 + ǫ(ψ(1 − ǫ) − ψ(1 + ǫ))

ǫ3
F4

(

1, 1 − ǫ, 1 − ǫ, 1 + ǫ;−y1, y2

)

−(−y1)
ǫ y−ǫ

2

1

ǫ2

{

[ln(−y1) + ψ(1 − ǫ) − ψ(−ǫ)] F4

(

1, 1 − ǫ, 1 + ǫ, 1 − ǫ;−y1, y2

)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ − ǫ 1 − − −
− − 1 + δ 1 − ǫ 1 + ǫ+ δ − − y1, y2

)

|δ=0

}

+(−y1)
ǫ 1

ǫ2

{

[

ln(−y1) + ψ(1 + ǫ) − ψ(−ǫ)
]

F4

(

1, 1 + ǫ, 1 + ǫ, 1 + ǫ;−y1, y2

)

+
∂

∂δ
F 2,1

0,2

(

1 + δ 1 + δ + ǫ 1 − − −
− − 1 + δ 1 + ǫ 1 + ǫ+ δ − − y1, y2

)

|δ=0

}

, (4.16)

which, if desired, may be expanded in ǫ in terms of real M functions.

The imaginary part is

Im I(IIa)
phys (κ, t1, t2) =

π

ǫ2

{

− y−ǫ
2

Γ(1−2ǫ) Γ(1+ǫ)

Γ(1−ǫ) F4

(

1−2ǫ, 1−ǫ, 1−ǫ, 1−ǫ;−y1, y2

)

+F4

(

1, 1 − ǫ, 1 − ǫ, 1 + ǫ;−y1, y2

)

+ (−y1)
ǫ y−ǫ

2 F4

(

1, 1 − ǫ, 1 + ǫ, 1 − ǫ;−y1, y2

)

−(−y1)
ǫ F4

(

1, 1 + ǫ, 1 + ǫ, 1 + ǫ;−y1, y2

)

}

. (4.17)
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The Appell functions in eq. (4.17) are all reducible to Gauss’ hypergeometric function.

We find

Im I(IIa)
phys (κ, t1, t2) =

π

ǫ2
1

√

λ(1,−y1, y2)

{

− y−ǫ
2

Γ(1 − 2ǫ) Γ(1 + ǫ)

Γ(1 − ǫ)
λ(1,−y1, y2)

ǫ

+2F1

(

1, 2ǫ, 1 + ǫ;
(1 − λ1)λ2

1 − λ1 λ2

)

+ (−y1)
ǫ y−ǫ

2 2F1

(

1, 2ǫ, 1 + ǫ;
λ1 (1 − λ2)

1 − λ1 λ2

)

−(−y1)
ǫ

2F1

(

1, 2ǫ, 1 + ǫ;
λ1 λ2

1 − λ1 λ2

)

}

, (4.18)

where λ denotes the Källen function, λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz, and

λ1 =
−1

2y1

(

y2 − y1 − 1 +
√

λ(1,−y1, y2)
)

λ2 =
1

2y2

(

y2 − y1 − 1 +
√

λ(1,−y1, y2)
)

. (4.19)

The hypergeometric function can be expanded as a Taylor series in ǫ,

2F1 (1, 2ǫ, 1 + ǫ; z) = 1 − 2 ǫ ln(1 − z) + 2 ǫ2
(

1

2
ln2(1 − z) − Li2(z)

)

+ O
(

ǫ3
)

. (4.20)

5 The two-loop gluon-production vertex

In terms of parity-even and odd contributions, the two-loop gluon-production vertex is

V (2)(t1, t2, τ, κ) = V (2)
e (t1, t2, τ, κ) + V (2)

o (t1, t2, τ, κ) . (5.1)

Using eq. (4.1) and the iteration formula (2.33), eq. (5.1) becomes

V (2)
e (ǫ) =

1

2

[

V (1)
e (ǫ)

]2
+

2G2(ǫ)

G(2ǫ)
f (2)(ǫ)V (1)

e (2ǫ) + O(ǫ) , (5.2)

V (2)
o (ǫ) = V (1)

e (ǫ)V (1)
o (ǫ) + O(ǫ) , (5.3)

where the parity-even and odd parts of the one-loop gluon-production vertex must be

known through to O
(

ǫ2
)

. We used the fact that V
(1)
o (ǫ) = O(ǫ), so it does not contribute

to the square of the one-loop vertex in eq. (5.2), and to the term proportional to f (2) in

eq. (5.3).

In the unphysical Euclidean region (2.15), eq. (5.2) becomes

V (2)
e (t1, t2, τ, κ)

=
1

2ǫ4

(

πǫ

sin(πǫ)

)2

− 2G2(ǫ)

G(2ǫ)
f (2)(ǫ)

1

4ǫ2
2πǫ

sin(2πǫ)

+
1

8
ln4 t1

t2
− VC3(t1, t2, τ) + ζ2 ln2 t1

t2

+

[

(

κ

t1

)2ǫ

+

(

κ

t2

)2ǫ
]

[

1

2ǫ2
ln2 −κ

τ
−
(

1

ǫ
f (2)(ǫ) + VC1(t1, t2)

)

ln
−κ
τ

]
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+

(

κ

t1

)ǫ( κ

t2

)ǫ( 1

ǫ2
ln2 −κ

τ
− 2 ln

−κ
τ

VC1(t1, t2)

)

−
[(

κ

t1

)ǫ

+

(

κ

t2

)ǫ] 1

ǫ2
πǫ

sin(πǫ)

(

−1

ǫ
ln

−κ
τ

+ ǫVC1(t1, t2)

)

−
[(

κ

t1

)ǫ

+

(

κ

t2

)ǫ](−κ
τ

)ǫ 1

ǫ
ln

−κ
τ

(

−1

2
ln2 t1

t2
+ ǫVC2(t1, t2, τ)

)

−
(−κ
τ

)ǫ 1

ǫ2
πǫ

sin(πǫ)

(

−1

2
ln2 t1

t2
+ ǫVC2(t1, t2, τ)

)

+ O(ǫ) , (5.4)

where we have used eq. (4.6) and collected the terms according to the different ana-

lytic structures.

The parity-odd part of the two-loop gluon-production vertex, V
(2)
o (t1, t2, τ, κ), starts

at O
(

ǫ−1
)

and is given by the product of eqs. (4.3) and (4.4).

The analytic continuation of the two-loop gluon-production vertex to the physical re-

gion where s, s1, s2 are positive and t1, t2 are negative, may be performed as in section (4.1).

6 Conclusions

In this paper we have computed the one-loop five-point amplitude m
(1)
5 in the planar

N = 4 supersymmetric Yang-Mills theory in multi-Regge kinematics, using the calculation

of the one-loop pentagon in D = 6 − 2ǫ performed in a companion paper [1]. We have

presented m
(1)
5 in the Euclidean region (2.16) as an expression to all orders in ǫ in terms

of parity-even, eq. (3.4), and parity-odd contributions, eq. (3.8), starting at O
(

ǫ−2
)

and

at O(ǫ), respectively.

Using the high-energy factorisation for colour-stripped amplitudes, we have computed

the one-loop gluon-production vertex to all orders in ǫ in eqs. (4.3) and (4.4). Because the

high-energy coefficient functions and the Regge trajectory are parity-even, the parity-odd

part of the one-loop gluon-production vertex equals the parity-odd part of the one-loop

five-point amplitude, and thus appears at O(ǫ). The Laurent expansion in ǫ through to

O
(

ǫ2
)

is given in eq. (4.6) for the parity-even part, and in ref. [1] for the parity-odd

part in terms of Goncharov’s multiple polylogarithms. In eqs. (4.7) and (4.11), we have

continued analytically the all-orders-in-ǫ one-loop gluon-production vertex to the physical

region. The even-parity part may be easily expanded in ǫ; the odd-parity part may be

more conveniently expanded in ǫ in terms of real M functions, as in ref. [1].

The iterative structure of the two-loop five-point amplitude implied by the BDS ansatz,

together with the high-energy factorisation, implies an iterative structure of the gluon-

production vertex. Thus, the knowledge of the one-loop gluon-production vertex through

to O
(

ǫ2
)

, allows us to perform the first computation of the two-loop gluon-production

vertex through to finite terms, which we present in eq. (5.4) as an expansion starting at

O(ǫ−4). The parity-odd part of the two-loop gluon-production vertex appears at O(ǫ−1)

and is given by the product of eqs. (4.3) and (4.4).3

3In ref. [33] the logarithm of the gluon-production vertex has been introduced. If exponentiated, it yields

at two-loop order the poles in ǫ through to O
`

ǫ−2
´

, but it misses the single poles in ǫ, as well as the finite

terms. Accordingly, it lacks completely the parity-odd contribution.
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If augmented by the soft-limit contribution to O(ǫ), which is as yet unknown, the

two-loop gluon-production vertex could be used as one of the building blocks of the kernel

of a BFKL equation at next-to-next-to-leading logarithmic (NNLL) accuracy. The other

building blocks are the three-loop Regge trajectory [6, 33–35], the one-loop vertex for the

emission of two gluons along the ladder (computed in [33] only for two gluons of the same

helicity) and the tree vertex for the emission of three gluons along the ladder [36, 37].
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A Multi-parton kinematics

We consider the production of three gluons of outgoing momentum pi, with i = 3, . . . , 5 in

the scattering between two gluons of ingoing momenta p1 and p2.
4

Using light-cone coordinates p± = p0 ± pz, and complex transverse coordinates p⊥ =

px + ipy, with scalar product 2p · q = p+q− + p−q+ − p⊥q
∗
⊥ − p∗⊥q⊥, the 4-momenta are,

p2 =
(

p+
2 /2, 0, 0, p

+
2 /2

)

≡
(

p+
2 , 0; 0, 0

)

,

p1 =
(

p−1 /2, 0, 0,−p−1 /2
)

≡
(

0, p−1 ; 0, 0
)

, (A.1)

pi =
(

(p+
i + p−i )/2,Re[pi⊥], Im[pi⊥], (p+

i − p−i )/2
)

≡
(

|pi⊥|eyi , |pi⊥|e−yi ; |pi⊥| cosφi, |pi⊥| sinφi

)

,

where y is the rapidity. The first notation above is the standard representation pµ =

(p0, px, py, pz), while in the second we have the + and - components on the left of the

semicolon, and on the right the transverse components. In the following, if not differently

stated, pi and pj are always understood to lie in the range 3 ≤ i, j ≤ n. The mass-shell

condition is |pi⊥|2 = p+
i p

−
i . Using momentum conservation,

0 =
5
∑

i=3

pi⊥ , p+
2 = −

5
∑

i=3

p+
i , p−1 = −

5
∑

i=3

p−i , (A.2)

the Mandelstam invariants may be written as,

sij = 2pi · pj = p+
i p

−
j + p−i p

+
j − pi⊥p

∗
j⊥ − p∗i⊥pj⊥ , (A.3)

4By convention we consider the scattering in the unphysical region where all momenta are taken as

outgoing, and then we analitically continue to the physical region where p0
1 < 0 and p0

2 < 0.
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so that

s = 2p1 · p2 =
5
∑

i,j=3

p+
i p

−
j ,

s2i = 2p2 · pi = −
5
∑

j=3

p−i p
+
j , (A.4)

s1i = 2p1 · pi = −
5
∑

j=3

p+
i p

−
j .

Using the spinor representation of ref. [36],

ψ+(pi) =













√

p+
i

√

p−i e
iφi

0

0













, ψ−(pi) =













0

0
√

p−i e
−iφi

−
√

p+
i













,

ψ+(p2) = i













√

−p+
2

0

0

0













, ψ−(p2) = i













0

0

0

−
√

−p+
2













,

ψ+(p1) = −i













0
√

−p−1
0

0













, ψ−(p1) = −i













0

0
√

−p−1
0













.

(A.5)

for the momenta (A.1),5 the spinor products are

〈21〉 = −√
s ,

〈2i〉 = −i
√

−p+
2

p+
i

pi⊥ , (A.6)

〈i1〉 = i
√

−p−1 p+
i ,

〈ij〉 = pi⊥

√

p+
j

p+
i

− pj⊥

√

p+
i

p+
j

,

where we have used the mass-shell condition |pi⊥|2 = p+
i p

−
i .

5The spinors of the incoming partons must be continued to negative energy after the complex conjugation,

e.g. ψ+(p2) = i

„

q

−p+

2 , 0, 0, 0

«

.
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B Multi-Regge kinematics

In multi-Regge kinematics, we require that the gluons are strongly ordered in rapidity

and have comparable transverse momentum (2.1). This is equivalent to requiring a strong

ordering of the light-cone coordinates,

p+
3 ≫ p+

4 ≫ p+
5 ; p−3 ≪ p−4 ≪ p−5 . (B.1)

Momentum conservation (A.2) then becomes

0 =

5
∑

i=3

pi⊥ , p+
2 ≃ −p+

3 , p−1 ≃ −p−5 , (B.2)

where the ≃ sign is understood to mean “equals up to corrections of next-to-leading accu-

racy”. The Mandelstam invariants (A.4) are reduced to,

s = 2p1 · p2 ≃ p+
3 p

−
5 ,

s2i = 2p2 · pi ≃ −p+
3 p

−
i , (B.3)

s1i = 2p1 · pi ≃ −p+
i p

−
5 ,

sij = 2pi · pj ≃ p+
i p

−
j i < j .

The product of the two successive invariants s34 and s45 fixes the mass shell of gluon 4,

s34s45 ≃ p+
3 p

−
4 p

+
4 p

−
5 = |p4⊥|2p+

3 p
−
5 ≃ |p4⊥|2s .

Thus,

|p4⊥|2 =
s34s45
s

. (B.4)

The spinor products (A.6) are,

〈21〉 ≃ −
√

p+
3 p

−
5 ,

〈2i〉 ≃ −i
√

p+
3

p+
i

pi⊥ , (B.5)

〈i1〉 ≃ i
√

p+
i p

−
5 ,

〈ij〉 ≃ −
√

p+
i

p+
j

pj⊥ for yi > yj .

C The soft limit of the one-loop five-point amplitude

We consider the five-point amplitude of section 2.2, and take the limit where the interme-

diate gluon becomes soft, p4 → 0. In this limit, the one-loop five-point amplitude factorises

as [19, 38],

lim
p4→0

m1−loop
5

(

1, 2, 3, 4λ , 5
)

= Softtree
(

3, 4λ, 5
)

m1−loop
4 (1, 2, 3, 5)

+Soft1−loop
(

3, 4λ, 5
)

mtree
4 (1, 2, 3, 5) (C.1)
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where the one-loop soft-gluon function, to all orders of ǫ, is

Soft1−loop
(

3, 4λ, 5
)

= −ḡ2 1

ǫ2
πǫ

sin(πǫ)

(

µ2(−s35)
(−s34)(−s45)

)ǫ

Softtree
(

3, 4λ, 5
)

(C.2)

and the tree-level soft function is

Softtree
(

3, 4+, 5
)

=
〈35〉

〈34〉〈45〉 . (C.3)

For the MHV amplitude we are considering, the soft limit for a negative helicity gluon is

trivial and is obtained from this by helicity reversal. In multi-Regge kinematics (2.16),

s35 = s; then, using the on-shell condition (2.17) and the normalisation of eq. (2.22), the

soft-gluon limit of the one-loop five-point coefficient becomes

lim
p4→0

m
(1)
5 (1, 2, 3, 4, 5) = m

(1)
4 (1, 2, 3, 5) − 1

ǫ2
πǫ

sin(πǫ)

(

µ2

−κ

)ǫ

, (C.4)

where we have factored out

lim
p4→0

m
(0)
5

(

1, 2, 3, 4λ, 5
)

= m
(0)
4 (1, 2, 3, 5)Softtree

(

3, 4λ, 5
)

. (C.5)

In addition, in the soft limit of gluon 4, we can write the one-loop coefficient (2.23) as,

lim
κ→0

m
(1)
5 (1, 2, 3, 4, 5) = m

(1)
4 (1, 2, 3, 5) + ᾱ(1)(t) ln

−κ
τ

+ lim
κ→0

V̄ (1)(t, t, τ, κ) , (C.6)

with t1 = t2 = t and

m
(1)
4 = ᾱ(1)(t) ln

−s
τ

+ 2 C̄(1)(t, τ) . (C.7)

Equating eqs. (C.4) and (C.6) and using eqs. (2.21) and (2.24), we obtain the soft limit of

the one-loop gluon-production vertex, to all orders of ǫ [18],

lim
κ→0

V (1)(t, t, τ, κ) = − 1

ǫ2
πǫ

sin(πǫ)
− 2

ǫ

(κ

t

)ǫ
ln

−κ
τ
, (C.8)

with

πǫ

sin(πǫ)
= Γ(1 + ǫ)Γ(1 − ǫ) = 1 + ζ2ǫ

2 +
7

4
ζ4ǫ

4 +
31

16
ζ6ǫ

6 + · · ·

=
∞
∑

n=0

cnǫ
2n, with c0 = 1, cn =

22n−1 − 1

22(n−1)
ζ2n . (C.9)
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